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ABSTRACT (221 WORDS)1

A parking incentive program named FlexPass have been conducted in University of Cal-2

ifornia, Berkley. The causal structure underlying employee parking behavior is examined3

in this study by a randomized controlled trial, where participants receiving treatment were4

offered incentives for parking less and taking other modes. This field experiment lasted for5

three months and recruited 392 staff and faculty members. Practicable problems encoun-6

tered during the study were non-random differential dropout after the group assignment7

and non-ignorable missing data. Missing data were measured by follow-up emails and esti-8

mated utilizing a mixed latent factor model, which outperformed traditional feature based9

models. Dropout bias was corrected by sample selection model. During the study, con-10

trol participants, served as baseline, parked 4.3 days per week and the FlexPass induced11

an average treatment effect of 4.2% parking demand reduction. A heterogeneity treatment12

effect has been discovered. Participants who claimed to be interested in the pricing scheme,13

accounted for 77% of the enrolled population. There is a larger treatment effect of 6.0% in14

this group. For the rest, most of whom are regular drives, there is no significant treatment15

effect. The finding suggests that instead of building new parking structures, increasing the16

parking prices and providing incentives at the same time could reduce parking demand. It17

also brings significant rewards to those who choose to travel by other modes.18

19

KEYWORD: Transportation Demand Management; Incentives Parking; Randomized Con-20

trolled Trial; Casual Inference21
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INTRODUCTION1

In order to reduce on-campus parking demand and create a more sustainable environment,2

a new parking pricing strategy is being proposed by the Parking and Transportation office3

of University of California, Berkeley (P&T of UC Berkeley). This parking pricing strategy,4

named FlexPass, is to be priced to provide an incentive to park less on working days, and5

preferably less than four working days per week. Before formally launching the FlexPass6

into the market, an experiment was first conducted to experiment the treatment effect of7

this new strategy.8

According to the Bureau of Transportation Statistics (10), nine out of ten Americans9

travel to work using personal vehicles. For those who drive, 95% are provided with a parking10

space free of charge (11). Nevertheless, a number of cities and some employees have realized11

that "free parking" is a key contributor to many negative environmental, social, economic12

and aesthetic externalities, and thus shown increasing interest in more rigorous parking13

management and pricing (12). Several studies have shown that charging for parking will14

lead some travelers to move to other commute options (1, 6, 15). UC Berkeley Parking and15

Transportation office currently price campus parking at $95-131 per month for most faulty16

and staff members. However, it is still heavily utilized, with recent field observations finding17

occupancies of 85-90% or higher at most locations for much of the workday (3). Parking price18

elasticity tends to be quite low, in the range of -.1 to -.3 (4). Thus, even if price increases19

substantially, many travelers are likely to continue to drive and park, inducing the demand20

for constructing new parking lots or replacing surface lots to buildings. In Berkeley, cost of21

new space is high, with construction cost penciled at $65,000 per space and land costs of22

$7M per acre (14).23

The tensions between the high costs of parking and the continued interest in having24

it available have posed a dilemma for many parking providers. Therefore, it is worthwhile25

considering whether other modes of transport might be a better way to go. For employment26

centers located in medium to high density urban locations such as Berkeley, realistic options27

for travel do exist. The challenge is that employees are unaware of or confused about the28

travel options that are available, as incentives to use these options may be missing or in-29

adequate. Riggs and Kuo (9) show that a ‘soft sell’ approach providing better information30

on available travel options can nudge some drivers to switch modes. Based on the cam-31

pus survey data, Proulex et al. concluded that if parking demand must be reduce, both32

price and incentives to use different travel modes would need to be increased (8). In a later33

project, Ng conducted focus groups, interviews and a stated preference survey and proposed34

several incentive schemes (7). With such incentives, Ng’s model results indicate that it35

might be possible to reduce the Berkeley on-campus parking demand by an additional 5%.36

However, the above inference was conducted based either stated preference or observational37

data, which can hardly support a valid causality link between incentives and reduction in38

parking demand. In its 2011 proposal to the USDOT’s FHWA for a value pricing project,39

the University of California, Berkeley proposed to test new parking policies and pricing ap-40

proaches that would reduce the disincentive to be an occasional user of parking rather than41

a regular monthly parker. The FlexPass study is a part of this program, which have been42

conducted as a randomized controlled trail with 392 participants during the Spring 201543

semester, February 1st, 2015 to April 30th, 2015.44

This paper presented an causal analysis of the treatment effect of the FlexPass. The45



Dounan Tang, Ziheng Lin 3

paper began with a brief introduction of the experimental design, followed by baseline de-1

scription of enrolled participants’ social economic data. Participants longitudinal parking2

behavior was the displayed. The missing report and dropout problems were also addressed.3

Missing reports were predicted from follow-up email surveys through a Mixed Latent Fac-4

tor model. Dropout biases were captured by a sample selection model. The effect size of5

FlexPass was estimated and insights into the incentive system were developed.6

Experimental Design7

This study targets the current annual Central Campus C Permit and Faculty/Staff F Permit8

holders who constitute the vast majority of the regular users of campus parking. These9

parking permits allow holders to seek a parking space in parking garages or surface lots by10

the permit type. C permits are available only to faculty and senior staff, F permits to other11

staff. The current price for F permit is $95 per month while $131 per month for C permit.12

Participants are only allowed to take part in this study if they have already purchased a13

C or F permit for the entire 2015 Spring semester. Enrolled participants will be assigned14

into two groups, treatment and control group, through a randomized controlled trial. The15

treatment-group participants are required to exchange the original permit hang-tags to new16

ones for the study, while those in the control group keeps the original hang-tags.17

Both study groups are required to report their daily parking choices via the FlexPass18

app over the entire study period, which is available in both iPhone and Android platforms.19

The default choice for every day is "Parked on Campus". This can changed to not park on20

campus for the day or the next day on the app’s main interface or for several days in the21

future on the app’s calendar. If participants indicate that they will not park, they will also22

be asked to report what alternate mode would be taking or whether they would be coming23

to campus. Participants are able change their parking decisions for a certain day till 12 noon24

on that day. Those decisions will be synchronized to our server in real time and will be sent25

to parking enforcement officers. Participants may receive citations if they park on campus26

after declaring that they will not.27

Participants in the treatment group are eligible for rebates which are based on their28

permit types and the number of working days (Mon. to Fri.) they park on campus in a29

given month. Rebate amounts are calculated as equation 1 below.30

T = max{Θ−Dδ, 0}

where D is the number of working days a certain participant parks on campus in a31

certain month and T is the total rebates for the month. The maximum monthly rebate is32

$Θ (Θ=95 for F permit holders while 131 for C permit holders). For each day parking on33

campus, a participant will be changed a $δ credit (δ =6 for F permit holder while 8 for C34

permit) until all credit has been used up. For example, an F permit holder who parks 1235

workdays on campus (approximately 3 work days a week) will receive a rebate of $23.136

1Detail description of the rebate calculation and a table of all possible rebate values can be found in the
homepage of our study website https://gogreen.berkeley.edu/flexpass/.
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FIGURE 1 : FlexPass smartphone app interface. From left to right, (a) Main Screen,
(b)Mode Reporting, (c) Calendar

Sample Characteristics1

Among the 4272 C&F permit holders at UC Berkeley whom we have reached through emails2

and postcards, 392 participants finished the sign-up process. They were equally divided3

into the treatment group and the control group. The demographic and social-economical4

information is illustrated in table 1. UC Berkeley staff made up the bulk of the sample.5

Female respondents account for 71 percent of staff and 57 percent of faculties. Respondents6

tended to be at the middle stages of their life cycle. 30 percent of the enrolled participants7

have at least one bike while 35 percent have Clipper card, a reloadable contactless card8

used for electronic transit fare payment in the San Francisco Bay Area. These provide them9

potential alternative commute modes when plan to forgo parking on campus. 77 percent10

of the participants enrolled in the study felt interested in the potential rebates they could11

collect. Rest 33 percent would like to support our research but were not interested in rebates,12

where 71 people also wrote down the reason for not interesting. Typical reasons includes13

"must park each work day", "I need to get to my children from time to time" and "No14

alternatives for me other than driving my car". 54.5 percent of participants also showed15

interests in potential of knowing parking availability via smartphone app. Respondents16

are asked about their weekday commute modes in the week previous to the entry survey.17

76 percent of the enrolled participants came to campus for all five weekdays. 79 percent of18

enrolled parking permit holders drove alone and parked on campus for more than 4 weekdays.19

If they were going to persist this behavior during the study, which is averagely parking on20

campus for 17 days per month, no rebate could be collected according to the rule of rebate21

calculation.22
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TABLE 1 : Sample descriptive statistics

Treatment Control Enrolled

UC Berkeley employment status (%) (%) (%)
FACULTY 22.4 19.1 20.8

STAFF 77.6 80.9 79.2
Age Group

TWENTY_FIVE_TO_THIRTY_FOUR 24.4 26.1 25.2
THIRTY_FIVE_TO_FORTY_FOUR 30.5 25.6 28.0
FORTY_FIVE_TO_FIFTY_FOUR 24.9 31.5 28.2
FIFTY_FIVE_TO_SIXTY_FOUR 15.2 13.3 14.3

SIXTY_FIVE_AND_OLDER 2.5 2.0 2.3
EIGHT_TEEN_TO_TWENTY_FOUR 2.5 1.6 2.0

Gender
FEMALE 65.6 65.0 65.3

MALE 34.4 35.0 34.7
Has Bike

FALSE 68.4 71.6 70.0
TRUE 31.6 28.4 30.0

Has Clipper Card
FALSE 66.3 64.2 65.3
TRUE 33.7 35.8 34.7

Rank Mobile App
1st 58.5 50.6 54.5
2nd 28.7 29.3 29.0
3rd 12.9 20.1 16.5

Rebate Interesting
FALSE 21.4 23.0 22.2
TRUE 78.6 77.0 77.8

Number of Days Commute to Campus
5 73.7 77.6 75.6
4 13.4 12.2 12.8
3 8.6 5.6 7.1
2 2.7 4.1 3.4
1 1.1 0.5 0.8
0 0.5 0.0 0.3

Number of Days Drive Alone
5 66.8 61.7 64.3
4 13.8 16.8 15.3
3 8.2 8.7 8.4
2 6.1 5.6 5.9
1 2.0 2.6 2.3
0 3.1 4.6 3.8

Number of Participates
196 196 392
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CAUSAL ANALYSIS OF THE FLEXPASS STUDY1

To infer the treatment effect of the FlexPass, we proposed a box model as shown in figure2

2(a). 392 samples were drawn from the box of 4272 C&F permit holders and assigned into3

treatment group and control group randomly. Given the group assignment T , and partici-4

pants indexed by i, Y T
i ,Y C

i denotes the potential outcomes given FlexPass treatment, Ti = 1,5

and non-treatment, Ti = 0, respectively. For each participant, one or other of the potential6

outcomes in counterfactual. The observed outcome is Yi = TiY
T
i + (1 − Ti)Y C

i . Yi is a7

64-dimension binary vector, where Yij is participant i’s parking choice on day j. Yij equals 18

if he or she did not park on campus on day j and 0 otherwise. Participants’ social economic9

characteristics, denoted as Xi on the ticket, were measured in the entry survey. As only av-10

erage treatment effect is concerned, the casual analysis will conducted based on the number11

of days participants not parking on campus during the entire study period, denoted as yi for12

participant i, yi = ∑
j
Yij. Similarly, let yTi = ∑

j
Y T
ij and yCi = ∑

j
Y C
ij , the average treatment13

effect is E(yT i − yCi). The naive estimator of the causal effect, E(y|T = 1) − E(y|T = 0),14

should be an unbiased since a randomized controlled trail was conducted. However, prob-15

lem arisen during the study as not all Yijs are observed, which causes biases in causal analysis.16

17

In this section, missing data and dropout problems will be addressed. The missing18

data will be imputed by a Mixed Latent Factor Model (MLFM) while dropout bias will be19

compensated through selection model. The result of casual analysis will then be discussed.20

FIGURE 2 : Box model for causal analysis

Dropouts, Missing Report Mechanism and Data Descriptions21

The app-reported longitudinal data of reduction in daily parking demand is shown in figure22

3a. The blue line which represents the treatment group is always above the green line which23

represents the control group. This may be a indicator for significant treatment effect at the24

first sight. However, this comparison relies on a strong assumption that when people did not25

report any thing through the app on certain days, they are considered as "Park On Campus".26

In fact, from focus group interviews during the study showed that sometimes participants27

forgot to use the app when did not use campus parking. Especially for participants in28
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control group, there is no incentives for them to report daily commute modes. During the1

entire study period, there were 74 participants in the control group who reported nothing2

through our smartphone app. In the treatment group, the number reduced to 38. Even3

with participants who have reported some parking activities, they may still under report the4

number of not-park-on-campus days, which led to an overestimation of the treatment effect.5

Therefore, instead of respond Yij, we additionally define, for each occasion j, an indicate6

Ra
ij, which equals 1 if participant i reported day j’s parking behavior through smartphone7

app and 0 if participant i didn’t use the app on day j. We then partition Yi into two sub-8

vectors such that Y o
i is the vector containing those Yij for which Ra

ij = 1 and Y m
i contains the9

remaining components. Y m
i is referred to missing reports. To further understand the missing10

report process, we sent commute mode surveys in the 6 weeks during the study to those who11

had not used their smartphone app for a week prior to the survey. The survey inquired12

participants about their daily commute choices in the past week. The average respond rate13

for the email survey is 62.2%. Hence for each occasion j, another indicator is defined as14

Re
ij, which equals 1 if participant i reported day j’s parking behavior through email and 015

otherwise.16

(a) Daily on-campus parking demand reduction for re-
bate and control groups

(b) Comparison of non campus parking
days between app reports and email re-
sponds

FIGURE 3 : Measurements of parking behavior

From the email survey, a hypothesis test of the missing report mechanism was con-17

ducted among three alternates: Missing Completely At Random (MCAR), Missing At Ran-18

dom (MAR), and Missing Not At Random (MNAR) [Rubin 1976, Little and Rubin 1987].19

The three mechanisms differ from each other based on the dependencies between missingness20

and observed and unobserved data. MCAR refers to the missingness is independent of both21

observed and unobserved data; MAR refers to missingness is independent of unobserved22

data; MNAR refers to missingness is independent of neither observed or unobserved data.23

The missingness process for MCAR and MAR are ignorable such that we can ignore formu-24

lating the missingness process when we are inferring the treatment effect. Otherwise, if the25

MNAR holds we should model the missingness process before conducting causal analysis. In26

the FlexPass study, we consider the missingness app reports to be Missing Not At Random27
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(MNAR). A possible evidence is that participants were aware that the default choice on the1

app is "park on campus". Thus, they did not report via the app when they did park on cam-2

pus. We compare the out comes from follow-up emails with app reports showing in figure3

3b. It can be observed that the email responses of non-campus parking days is generally4

lower than the app reports. In those 6 weeks when surveys were sent, the app reports re-5

sulted in averagely 1.92 non-campus parking days per week among the rebate groups, while6

this number is 0.57 for email responds. Through a two sample t-test the null hypothesis of7

MAR leads to a p-value of 0.002, which rejects MAR and also MCAR. The missing report8

mechanism is regarded as MNAR and will be modeled through a Mixed Latent Factor Model9

(MLFM) in the next section.10

To sum up, in our study, respond vector Yi is measured by both app and follow-up11

email. All possible outcomes for Yij are then illustrated in figure 2(b), where the shaded12

region means not observable. In situation (1), participant i report day j’s parking choice13

through the app, where Yij is observed and no email will be sent. In situation(2) , partici-14

pant i didn’t use the app on day j and an email will be sent to i. The participant answered15

the email and thus Yij is observed. In situation(3), Yij is not observed as participant i didn’t16

answer the email. Situation(4) may happen when participant i droped out from the study17

that neither did she/he use the app nor did she/he receive any email. Noticeably, all Y o
i is18

observed in this study by definition and part of Y m
i is measured in situation (2). If Yi only19

contains Yij of situation (3) and (4), participants i is regarded as ’Dropout Participants’.20

Otherwise, complete data Yi will be recovered from Yij observed in situation (1) and (2).21

22

Recover Missing Reports23

The Latent Factor Model(LFM), also called Matrix Factorization Model, is widely applied24

in recommendation systems in the search engine, movie and music industry for matching25

users and potential items that they would be interested in (2, 5). It has been shown that26

the LFM’s are superior over attribute based models, which is often used in transportation27

studies, in terms of prediction accuracy (5). The idea behind LFM is that preference of a28

user and attitudes of an item are determined by a small number of factors. The factors of29

a user or an item can be represented as vectors Ui or Vj, respectively. These latent factors30

are capable utilizing observed user-item interactions for predicting unobserved interactions,31

Yij.32

Yij = Ui
′Vj + εij (1)

applying the concept to the FlexPass study, we regard the study participants and the33

working days during the study period as ’users’ and ’items’, while parking choice matrix Y34

as rating matrix. Denote the number of participants as M and number of working days as35

N. Yi,j stores participant i’s parking choice on day j. To illustrate the idea of LFM, we first36

assume for all i and j, Yij is generated by from the same process described in equation 1 with37

U and V unknown. U and V is a M × L and N × L matrix respectively, where ith row of38

U is referred as participant i’s latent factor while jth row of V is referred as day j’s latent39

factor. When εij is independent and identically Gaussian distributed (i.i.d. Gaussian), the40

estimated parking respond matrix Ŷ can be expressed by U′V. Let ‖.‖F denotes Frobenius41
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norm, to maximize the prediction accuracy of rating matrix equals to solve:1

min
rank(Ŷ)6L

∥∥∥Y−Ŷ
∥∥∥
F

whose solution is essentially a singular value decomposition(SVD) of Y. Optimal Ŷ∗ and2

corresponding prediction error can be expressed by:3

Ŷ∗ =
L∑
i=1

σiuivi
′;
∥∥∥Y − Ŷ∗

∥∥∥
F

=
rank(Y)∑
i=L+1

σi
2

where σi is known as ith singular values of Y, ui and vi is called the ith left-singular vector4

and right-singular vector, respectively. These singular vectors are often regarded as latent5

semantic factors in information retrieval. In the FlexPass study, the full dataset should6

contain 292×64 = 18688 responds, while in reality we collected 8093 app responds and 26097

email responds, which account for 57% of the full dataset size. Since the sum-square distance8

can be computed only for the observed entires of the target sparse matrix Y, as shown9

by (13), this seemingly minor modification results in a difficult non-convex optimization10

problem which cannot be solved using standard SVD. LMF is closely related to SVD but11

models directly the observed ratings while avoid overfitting through a regularized model.12

Noticeably, the key underlying probabilistic foundation for LFM is that the error term in13

equation 1 is i.i.d. Gaussian which implies the missing data mechanism is considered as14

MCAR.15

To model MNAR mechanism, we proposed a Mixed Latent Factor Model(MLFM),16

where Yij generated from two different processes depending on whether Yij is observed17

through app reporting, Ra
ij = 1, or otherwise Ra

ij = 0.18

Yij = (1−Ra
ij)αmi +Ra

ijα
o
i + βj + Ui

′Vj + εij; εij ∼ N (ε|0, σ2) (2)
where βj is the weekday specified constant for day j; αoi is the participant specified19

constant for participant i when app report observed, Ra
ij = 1; and αmi is the participant20

specified constant when app report missing, Ra
ij = 0. N (x|µ, σ2) is the probability density21

function (pdf) of the Gaussian distribution with mean µ and variance σ2. Ra
ij is the app22

report indicator defined in section 3.1. The MNAR mechanism is modeled by two participant23

specific constant parameters. Yij depends on αoi if app report exists while depends on αmi if24

otherwise. More complicated Mixed-LMF can be created where Ui is also different for app25

reports and missing reports. However, this will add M × L more parameters to the model26

which largely increases the computation complexity. Also, absorbing heterogeneity of app27

report responds Y o
i and missing reports Y m

i by two M dimension vectors leads to more clear28

interpretations. To prevent over-fitting, we also place zero-mean spherical Gaussian priors29

on latent factors:30

p(αo|σαo
2) =

M∏
i=1
N (αoi|0, σαo

2I), p(αm|σαm
2) =

M∏
i=1
N (αmi|0, σαm

2I), p(β|σβ2) =
N∏
j=1
N (βj|0, σβ2I)

31

p(U|σU 2) =
M∏
i=1
N (Ui|0, σU 2I), p(V |σV 2) =

N∏
j=1
N (Vj|0, σV 2I)
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The corresponding graphic model for Mixed Latent Factor model is shown in figure 4. The
log of posterior distribution over the latent factors is given by

ln p(αo,αm, β,U,V|Y,R, σαo
2, σαm

2, σβ
2, σU

2, σV
2) ∝

ln p(Y|R, αo,αm, β,U,V) + ln
∏
i,j

N (αoi|0, σαo
2I)R

a
ij + ln

∏
i,j

N (αmi|0, σαm
2I)(1−Ra

ij)

+ ln p(β|σβ2) + ln p(U|σU 2) + ln p(V|σV 2)

Maximizing the log-posterior over latent factors with hyper-parameters, i.e. prior variances,
kept fixed is equivalent to minimizing the sum-of-squared-errors objective function with
quadratic regularization terms. Furthermore, to control the number of hyper-parameters,we
set σαo=σαm= σβ and σU=σV .

min
∑
i,j

Iij{[Yij − (1−Ra
ij)αmi +Ra

ijα
o
i + βj + Ui

′V]2

+ λαβ[Ra
ijα

o2
i + (1−Ra

ij)αm2
i + βj

2] + λUV (Uij2 + Vij
2)} (3)

where Iij is the indicator function of all observed data that Iij = Ra
ij +Re

ij and λαβ = σ2/σ2
β,1

λUV = σ2/σ2
U . A local minimum of the objective function given by equation can be found2

by perform gradient descent in αo,αm, β,U and V.3

4

FIGURE 4 : Graphic Model for Mixed Latent Factor Model

To apply the MLFM to our data, we first removed "dropouts", which results in 3065

valid users in our MLFM, M = 306. All weekdays during the study are also included,6

which leads to N = 64. Dimension of latent factors L is set to be 10. As we penalize the7

norms of parameters, the model performance will not be sensitive to L. At the occasion8

i,j where the respond is missing, we predict that participant i will not park on campus on9

day j if the Y estimated from equation 2 is larger than 0.5. A 5-fold cross validation was10

conducted to choose optimal λUV and λαβ. The original sample is randomly partitioned11

into 5 equal sized subsamples. Every round, a single subsample is retained as the validation12

data for testing the model, and the remaining 4 subsamples are used as training data.13

The cross-validation process is then repeated 5 times and the 5 predicting errors can then14

be averaged to produce a single estimation called cross validation error. λαβ = 0.5 and15
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λUV = 0.05 results in the best overall cross validation error of 20.88%. For participants in1

control group, the false positive rate p(Ŷij = 1|Yij = 0, Ti = 0) is 19.07% while the false2

negative rate p(Ŷij = 0|Yij = 1, Ti = 0) is 18.09%. For participants in treatment group,3

the false positive rate p(Ŷij = 1|Yij = 0, Ti = 1) is 13.61% while the false negative rate4

p(Ŷij = 0|Yij = 1, Ti = 1) is 25.39%. Although the false positive and negative rate is5

imbalanced for treatment population, it systematically under-predicts the number of non-6

campus parking days, which will lead to a conservative estimation of treatment effect.7

We compare the difference between MLFM and attribute based model by building8

a random forest model. The random forest model predicts the Yij using social-economic9

features collected from the entry survey with each Yij considered independent. The random10

forest resulted overall cross-validation error of 23.66%. For participants in treatment group,11

the false positive rate p(Ŷij = 1|Yij = 0, Ti = 1) is 12.78% while the false negative rate12

p(Ŷij = 0|Yij = 1, Ti = 1) is 50.61%. The random forest model has significantly higher13

false negative rate than the MLFM, which led to a worse over cross-validation error. This is14

due to the disadvantage of feature based models in capturing heterogeneities in participants’15

behavior with limited features.16

In the estimated MLFM model, there are L latent components in both factor matrix17

U and V. Similar to the standard SVD, we rank these components by their information18

amount, where first we calculate σl2 =
M∑
i=1

Uil
2 +

N∑
j=1

Vjl
2 and sort U and V in the way that19

σ2
l > σ2

l+1 for all l = 1, ..., L. lth column of the new factor matrix U and V is denoted as20

lth principal component of V. Weekday latent factor matrix V is visualized by its first and21

second principal component in figure 5a. Different weekdays are drawn with different color22

and markers. Patterns can be observed such as Fridays are mainly distributed on the upper23

part while Mondays on the lower left. Features of two holidays are captured in the model24

as their latent factors depart from the population. In order to show how MNAR mechanism25

is captured in participant specific constant parameters, a scatter-hist plot for αoi and αmi is26

drawn for every valid participant i on figure 5b. with kernel density of αo and αm projecting27

on x and y axis. It can be observed from the scatter plot that for participants in treatment28

group, 73% of the blue dots are below the 45 degree dash line, meaning that αoi > αmi ,29

which is in line to with the information shown in figure 3b. From the kernel density plot for30

αo we can observe that the distribution of αo for treatment group is shifted to the right of31

control group, meaning the app reports revealed that treatment group forwent parking on32

campus more often. The kernel density plot for missing report participant-specified constant33

αm shows the opposite result. αmi for treatment group are concentrating at rather low34

values, meaning that the missing report rate of treatment participants is rather small. αm35

distribution of control group shows similar pattern as its αo distribution, capturing control36

participants often forgot to report when they did not park.37

Compensate Differential Dropout Bias38

For valid participants, yi can be calculated from the recovered parking respond matrix Ŷ,39

such that yi =
N∑
j=1

Ŷij. For dropout participants, i.e. participants in the treatment group did40

not pick up the FlexPass hang tag and people in control group did not report any parking41



Dounan Tang, Ziheng Lin 12

(a) First and second principal component of V
(b) Scatter-hist plot for participant specific
constant parameters αo and αm

FIGURE 5 : Visualization of latent factors

choice during the study, their yi’s are unobservable. We denote a dropout indicator Rd
i ,1

where Rd
i = 0 if participant i dropped out and 0 otherwise. The naive estimator using2

observed outcomes, E(y|T = 1, Rd = 1) − E(y|T = 0, Rd = 1), will be biased because of3

the existence of non-random dropout as confounder. Existence of in randomized controlled4

trails, e.g. FlexPass Study, experiments of new drug impact, are not rare. Often, the subjects5

can decide themselves, whether they accept the treatment, which is not under researchers’6

control. This problem is usually referred to as a sample selection or self-selection problem (?7

). Additional information are required to estimate the causal effect under this scenario.8

Popular choices include, pseudo-randomization, instruments and the information about the9

functional form of the selection process. As the reason for dropout is explicit known in our10

study, sample selection model was employed.11

We first consider a homogeneous treatment effect δ which does not vary over individ-12

ual. The sample selection model with differential consists the following structural process:13

y∗i = βO
′
Xi

O + δTi + εi
O

Rd∗
i = [TiβT S + (1− Ti)βCS]′ZiS + εi

S

where Rd∗
i is the realization of the latent value of the selection "tendency" for the participant14

i, and y∗i is the latent outcome of total non-campus parking days during the study. Xi
O

15

are explanatory variables including some background characteristics of enrolled participants.16

Zi
S are explanatory variables for the selection equation. Identification requires Xi

O be at17

most a strict subset of ZiS (there should be at least one variable in ZiS that is not also in18

Xi
O). As dropouts happened in both groups and is due to different reason, a differential19

dropout process is modeled. βT S and βCS represents parameters describes distinct dropout20
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processes for treatment and control group respectively. We observe:1

Rd
i =

{
0
1

if Rd∗
i < 0

otherwise
2

yi =
{
unknown

yi
∗

if Rd
i = 0

otherwise

i.e. we observe the parking respond only if the latent selection Rd∗
i is positive, which means

the participant i did not dropout. The observed dependence between non-campus parking
frequency yi and treatment Ti can now be written as:

E[y|T = Ti, R
d = 1, XO = XO

i] =
βO
′
Xi

O + δTi + E[εiO|εiS > −[TiβT S + (1− Ti)βCS]′ZiS] (4)

The third term in equation 4 illustrates why the naive estimator using observed data3

gives in general biased result. E[εiO|εiS > −[TiβT S + (1 − Ti)βCS]′ZiS] 6= 0 unless εiS and4

εi
O are mean independent, e.g. the dropout process is completely random. Parameters can5

be estimated effectively through maximal likelihood method by assuming the error terms6

follow a bivariate normal distribution (? )toomet2008sample):7 (
εS

εO

)
∼ N

([
0
0

]
,

[
1 ρ
ρ σ2

])

where ρ describes the relationship between observed non-campus parking frequency and8

dropout process. ρ > 0 indicates a "positive selection", where participants remained in9

the study are those who forwent campus parking more often. ρ < 0 indicates a ‘negative10

selection’, where participants who forwent parking more often dropped out. ρ = 0 indicates11

that participants’ parking behavior is independent of the dropout process.12

The probit results for selection process in TABLE 2 offer clear insights into the value13

of different social economic features in explaining the probability of dropout in treatment14

and control groups. Participants who stay valid in treatment group are essentially who went15

to the P&T office in person and changed to the new hang-tag, which can be viewed as a extra16

time cost. The table suggests that owning a Clipper card decrease the odds of dropping off17

in treatment group; being interested in rebates increased the probability of stay valid even18

more. Indeed, the selection process implied that there may exists a "positive selection" that19

people with potential alternative commute modes and with willingness to collect the rebate20

tend to remain active in the treatment group. For control group, participants who never21

used the app and replied the email survey were considered as dropped out. We found that22

participants who prefer to receive information through channels other than smartphone app23

tend to drop out. Being senior, 55-year-old or elder, increased the odds of not reporting24

parking behavior. Furthermore, participants who had commuted to campus less often before25

the study began were going to stay valid in control group. We interpret this as those in this26

category forwent parking on campus more often and thus were more likely to remember to27

use the app.28

The regression result for measurement equation in sample selection model is shown in29

TABLE 2. Two ordinary least squares (OLS) regressions were also conducted directly based30
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TABLE 2 : Selection equation

Dependent variable:
TreatmentValid ControlValid

(1) (2)
Age Group.SENIOR 0.116 −0.666∗∗

(0.314) (0.297)

Gender.MALE 0.307 0.027
(0.265) (0.222)

Has Bike.TRUE 0.420 0.241
(0.270) (0.236)

Has Clipper Card.TRUE 0.541∗∗ 0.030
(0.257) (0.218)

Berkeley Staff.TRUE 0.665∗∗ 0.251
(0.271) (0.270)

Days Not Commute 0.159∗ 0.204∗∗
(0.089) (0.092)

Rank Mobile App 0.084 −0.191∗
(0.132) (0.114)

Rebate Interesting.TURUE 0.793∗∗∗ −0.340
(0.251) (0.262)

Constant −0.977∗∗ 0.674
(0.449) (0.428)

Observations 196 196
Log Likelihood -83.604 -101.530
Akaike Inf. Crit. 185.208 221.061

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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on 306 observed parking responds as baseline. All the four models gave similar estimations1

for the effect of being UC Berkeley staff members. They significantly parked about 4 days2

more than faculties. It can be explained by their more restricted working schedules. The3

regression also showed that participants owing bikes parked on campus less often. First4

considering model (1) and (3), where the homogeneous treatment effect was estimated. The5

selection model suggested a barely significant average treatment effect of 2.295 days reduction6

of on campus parking per participant during 3 months. The correction between selection7

and observation process ρ was highly significantly positive. We interpret this as an indicator8

for "positive selection". The OLS estimated a larger and more significant treatment effect,9

which, however, biased. We further consider the existence of heterogeneous treatment effect,10

where FlexPass’ treatment effect varied among different types of individual. This is captured11

by an interaction term in model (2) and (4). In the sample selection model with interaction12

term, model (4), there is indeed no significant treatment effect of FlexPass for people who13

had reported not interested in the rebate. According to the entry survey, before the study14

rebate-not-interested participants parked on campus for 4.6±1.1 days, while rebate-interested15

participants parked on campus 4.1± 1.3 days. Rebate-not-interested participants generally16

have a hard demand for driving and parking on campus, with small price elasticities. Before17

the experiment. The size of treatment effect on rebate-interested participants was 3.372 days18

with standard error 1.436 (The covariance between the coefficients of interaction term and19

treatment T was -8.024). This results in a p-value of 0.017, which is considered as significant20

effect.21

As mentioned before, MFLM underestimated number of non-campus parking days for22

treatment group. Sample selection model, compared OLS, produced conservative estimator23

of the treatment effect. Although our estimation of treatment effect may be still biased,24

it is in the safe direction. Therefore we concluded that FlexPass did changed participants’25

parking behavior. On the population level, the treatment effect of FlexPass was 2.23 days per26

participants, which is a 0.18 day reduction per week. This 4.2% demand reduction is close27

to the 5% Ng inferred from the focus group and stated preference survey (7), but slightly28

smaller. There is no significant treatment effect for people who were regular drivers. For29

participants reported interested in the incentives, which is 77.8 percent of the population,30

FlexPass induced a 3.372 days on campus parking demand reduction per participant, which31

is a 0.26 day reduction per week, a 6.0% demand reduction. Therefore, if we are going to32

increase the parking price of the regular monthly permit and provide incentives at the same33

time, regular driver with low price elasticities will stay on the monthly permit who pay the34

extra price, while drivers who are willing to adopt other modes can benefit from the rebate.35

CONCLUSION36

Due to the low elasticities of campus parking demand and absence of incentive programs,37

the Parking and Transportation office of University of California, Berkeley has proposed38

the FlexPass for encouraging campus employees to park less on working days. Before the39

FlexPass is launched on the market, we conducted the FlexPass study to experiment the40

treatment effect of the new pricing strategy on a population of 392 UC employees. The41

3-month study lasted from February 1st to April 30th, 2015 with 8093 responds from the42

smartphone app and 2609 responds from email survey were collected.43

We presented an causal analysis of the treatment effect of the FlexPass using the44
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TABLE 3 : Casual Inference Results

Dependent variable:

noPark

OLS selection

(1) (2) (3) (4)
Rebate 2.841∗∗ −2.836 2.295∗ −1.978

(1.257) (2.792) (1.279) (2.814)

Berkeley_Staff −4.010∗∗∗ −3.907∗∗ −4.430∗∗∗ −4.300∗∗∗
(1.532) (1.522) (1.551) (1.535)

Age_Group.Senior 0.969 1.308 1.650 1.812
(1.942) (1.934) (1.967) (1.949)

Has_Bike 2.750∗∗ 2.960∗∗ 2.253 2.484∗
(1.370) (1.363) (1.393) (1.383)

Rebate_Interesting.new 3.279∗∗ 0.149 2.758∗ 0.414
(1.594) (2.098) (1.611) (2.107)

Rebate:Rebate_Interesting.new 7.089∗∗ 5.435∗∗
(3.118) (3.193)

Constant 8.481∗∗∗ 10.653∗∗∗ 7.182∗∗∗ 9.501∗∗∗
(2.055) (2.254) (2.241) (2.386)

Observations 306 306 400 400
R2 0.085 0.101
Adjusted R2 0.070 0.083
Log Likelihood -1,354.243 -1,352.815
rho 0.405∗∗∗ 0.356∗∗

(0.122) (0.141)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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longitudinal parking behavior data using the box model. There were two biases that we1

have estimated using the Mixed Latent Factor Model (MLFM) and the selection model.2

The missingness in the app report is Missing Not At Random (MNAR), which is shown3

by results from the email surveys. We proposed the MLFM for modeling the missingness4

and for recovering the missing data. The MLFM resulted 20.88% cross-validation error rate,5

which outperforms the best feature-based model that we have experimented. Dropout biases6

were addressed by a sample selection model. We present both OLS and selection model and7

the selection model has a conservative result. Among the entire group of participants, the8

treatment effect of FlexPass is 2.23 days over the study period, which is a 4.2% demand9

reduction. However, this treatment effect only showed significance among participants with10

rebate interests.11

In the FlexPass study, we totally issued $4256 rebate to participants in the treatment12

group. On average, for the 158 valid participants in the treatment group, each participant13

received $26.94 for forgoing parking on campus over the entire study period. The highest14

rebate for an individual was $285 while most of others remained under $20. Therefore, the15

FlexPass study showed the potential of freeing parking resources from a portion of campus16

employees via incentives. Those spaces could be reused by other employees or visitors. If the17

FlexPass becomes sustainable commodity for every employees at UC Berkeley, the rebates for18

forgoing parking need to covered. A potential solution could be raising the original parking19

price. Since the campus parking demand is rather inelastic, the increase in the revenue could20

be sufficient to cover the rebates. Thus, a change in the parking policy could be an efficient21

way to address the campus parking shortage.22

The FlexPass study has experimented the The FlexPass study has experimented23

the incentives using fixed price schemes. Under the fixed price incentives, the willingness24

to accept for each individual for forgoing campus parking is not observed. Future study25

could be designed with flexible rebate schemes such that participants report their daily true26

willingness to accept for choosing alternative commute methods. In such way, the demand27

of campus parking can be better understood.28
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