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A B S T R A C T

Inductive reasoning, which entails reaching conclusions that are based on but go beyond available evidence, has
long been of interest in cognitive science. Nevertheless, knowledge is still lacking as to the specific cognitive
processes that underlie inductive reasoning. Here, we shed light on these processes in two ways. First, we
characterized the timecourse of inductive reasoning in a rule induction task, using pupil dilation as a moment-
by-moment measure of cognitive load. Participants’ patterns of behavior and pupillary responses indicated that
they engaged in rule inference on-line, and were surprised when additional evidence violated their inferred
rules. Second, we sought to gain insight into how participants represented rules on this task – specifically,
whether they would structure the rules hierarchically when possible. We predicted the cognitive load imposed
by hierarchical representations, as well as by non-hierarchical, flat ones. We used task-evoked pupil dilation as a
metric of cognitive load to infer, based on these predictions, which participants represented rules with flat or
hierarchical structures. Participants categorized as representing the rules hierarchically or flat differed in task
performance and self-reports of strategy. Hierarchical rule representation was associated with more efficient
performance and more pronounced pupillary responses to rule violations on trials that afford a higher-order
regularity, but with less efficient performance on trials that do not. Thus, differences in rule representation can
be inferred from a physiological measure of cognitive load, and are associated with differences in performance.
These results illustrate how pupillometry can provide a window into reasoning as it unfolds over time.

1. Introduction

Inductive reasoning is a central element of complex human thought,
and features prominently in everyday life. Induction is the process of
drawing conclusions that go beyond the available evidence, for example
completing patterns or anticipating future events (Hume, 2008). In-
duction is the counterpart of deduction, in which the available evidence
precludes all but a single conclusion, like in syllogistic reasoning. In-
ductive reasoning is crucial for generalizing knowledge, and supports a
wide variety of cognitive capacities, including word learning (Xu &
Tenenbaum, 2007), categorical reasoning and generalization (Medin &
Schaffer, 1978; Trabasso & Bower, 1968), causal reasoning (Griffiths &
Tenenbaum, 2005), anticipation and change detection (Nassar et al.,
2012; O’Reilly et al., 2013), and creativity (Collins & Koechlin, 2012).
Humans exhibit inductive reasoning spontaneously, consistently, and
across various domains (for review, see Tenenbaum, Kemp, Griffiths, &
Goodman, 2011).

Humans also have the ability to form abstract, hierarchical re-
presentations, for example breaking long-term goals into smaller sub-

goals, recognizing abstract patterns across patterns, and asserting in-
ternal control over cognitive processes (Badre & Frank, 2012; Botvinick,
Niv, & Barto, 2009; Collins & Frank, 2013; Collins & Koechlin, 2012;
Miller & Cohen, 2001; Ribas-Fernandes et al., 2011). Surprisingly,
people often create such structured hierarchical representations, rather
than non-structured flat representations, even when a given task is not
itself structured hierarchically (Collins, Cavanagh, & Frank, 2014).
Hierarchical representations can increase or deteriorate performance
compared to flat representations, depending on the structure of the
problem, and its applicability for reasoning (Badre & Frank, 2012;
Botvinick & Weinstein, 2014; Collins et al., 2014; Farashahi, Rowe,
Aslami, Lee, & Soltani, 2017; Frank & Badre, 2012).

In the current study, we aimed to investigate the cognitive processes
that underly inductive reasoning, i.e., how abstract rules are gleaned
from specific evidence, and how new data are treated that either con-
form with or violate these rules. We aimed to better understand at a
mechanistic level how people integrate multiple pieces of information
to infer rules and to make predictions. Our task was structured such that
the underlying rules could be represented in a hierarchical or in a flat
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way, with advantages for both, but in different task conditions. We
were interested in the processes involved in rule inference, and whether
inferred rules would have hierarchical or flat structure.

1.1. Inference and Rule-Guided reasoning

The study of inductive reasoning has been approached from several
angles that are complementary to the approach taken in the present
study. Bayesian statistics have been employed to study human inductive
reasoning by providing a rational framework for how old beliefs should
be updated in light of new information (Tenenbaum et al., 2011;
Tenenbaum, Griffiths, & Kemp, 2006). More broadly, the Bayesian ac-
count describes a multifaceted number of cognitive phenomena, using a
small number of fundamental principles from probability theory.
Nevertheless, situated at the computational level of analysis (Marr,
1982), i.e., concerned with what abstract goal an organism is trying to
achieve, this approach does not speak to the mechanisms underlying
inductive reasoning, i.e., how the goal can be achieved. The current
study aims to elucidate inductive reasoning at the algorithmic level.

Knowledge about the implementation of rule-guided reasoning in
the brain comes from another line of research, which mainly focuses on
the underlying brain circuitry. Studies in humans and non-human pri-
mates have identified the brain areas that are involved in the storage,
retrieval, and application of rules (for reviews, see Bunge, 2004; Bunge
& Wallis, 2007). However, in most tasks in this field, rules are explicitly
given to experimental subjects, such that the inductive component of
rule-guided reasoning remains largely unknown. In addition, most
paradigms focus on very simple rules in order to locate brain regions
specific to different cognitive components, leaving unknown the neural
structures underlying complex, potentially hierarchical rules. More re-
cently, research employing functional magnetic resonance imaging
(fMRI) in humans has established that the abstract, higher-level com-
ponents of hierarchical representations are represented in more anterior
regions, and the concrete, lower-level componets are represented in
more posterior regions of the brain (Badre & D’Esposito, 2007; Badre &
Frank, 2012; Botvinick et al., 2009; Bunge & Zelazo, 2006; Collins &
Koechlin, 2012; Koechlin & Summerfield, 2007).

Some of the fMRI studies of rule representation also involve rule
inference, shedding some light on the neural structures underlying
these processes. In this line of work, computational models describe
sequences of computations during hierarchical inductive learning with
regard to certain brain areas (Badre & Frank, 2012). Other models have
described the process of learning, storing, and retrieving rules (Collins
& Koechlin, 2012). Nevertheless, limited by the low temporal resolution
of fMRI, these studies did not address the fine-grained temporal dy-
namics involved in rule inference that are of interest in the current
study.

In the present study, we were interested in how rules are inferred
and evolve over time as more and more information comes in. To in-
vestigate the underlying processes more closely, we measured pupil
dilation, an index of the waxing and waning of cognitive effort over
time. By collecting pupillometry data while participants performed the
inductive reasoning task, we explored how people organize information
in working memory as it comes in, whether they recognize regularities
and organizing principles, and – if so – whether proactive hypothesis
formulation helps them predict subsequent events. Before describing
our experimental paradigm, we briefly introduce pupillometry.

1.2. Pupil dilation as a measure of cognitive processing

Pupil dilation has been used as a measure of cognitive and emo-
tional processing for more than a century (Löwenstein, 1920). Under
stable lighting conditions, pupil diameters change as a function of the
activity of the brain’s locus coeruleus (LC), a small nucleus in the
brainstem (Joshi, Li, Kalwani, & Gold, 2016; Rajkowski, Kubiak, &
Aston-Jones, 1993). The LC is the only source of cortical

norepinephrine (NE) (Sara, 2009), a neuromodulator that crucially in-
fluences a wide range of cognitive functions, such as attention, memory,
and cognitive control (Robbins & Arnsten, 2009; Sara, 2009). As a re-
sult, dynamic, or phasic, changes in pupil diameter in a well-controlled
experimental manipulation index fluctuating levels of cognitive effort
during task performance (Eckstein, Guerra-Carrillo, Miller Singley, &
Bunge, 2017).

1.2.1. Phasic pupil dilation: Adaptive gain and unexpected uncertainty
The significance of phasic LC-NE activity has been concisely sum-

marized by Yu and Dayan’s (2005) unexpected-uncertainty theory and
Aston-Jones and Cohen’s (2005) adaptive-gain theory. These com-
plementary theories are grounded in computational modeling (Yu &
Dayan, 2005) and neurophysiological, animal, and human research
(Aston-Jones & Cohen, 2005). The present work builds upon both
theories.

The unexpected-uncertainty theory (Yu & Dayan, 2005) postulates
that LC-NE activity is elicited when an event falls outside the range of
expected variation (i.e., “unexpected uncertainty”). One line of evi-
dence for this theory comes from studies that show phasic pupil dilation
in response to so-called “oddball” stimuli, single differing stimuli in a
stream of otherwise identical auditory or visual stimuli (Aston-Jones,
Rajkowski, Kubiak, & Alexinsky, 1994; Book, Stevens, Pearlson, &
Kiehl, 2008; Wetzel, Buttelmann, Schieler, & Widmann, 2016). Typical
oddball studies show that participants’ LC-NE system responds to
simple events of unexpected uncertainty, such that perceptual oddball
stimuli elicit phasic pupillary dilation.

More evidence for the unexpected-uncertainty theory comes from
recent research, in which participants predict future stimuli based on
past stimuli. In these studies, all stimuli differ slightly from each other
(expected uncertainty) because they are generated by noisy rules.
Crucially, sometimes the rule itself changes, such that new stimuli de-
viate wildly from previous ones (unexpected uncertainty). Stimuli of
unexpected uncertainty typically elicit the largest pupil dilations in
these paradigms (Nassar et al., 2012; O’Reilly et al., 2013; Preuschoff,
2011), suggesting that participants recognized when the rule changed.
In the current study, we employed pupillary responses in a similar way,
testing whether participants recognized the violation of rules that first
had to be inferred.

The second prominent theory of LC-NE function, the adaptive-gain
theory (Aston-Jones & Cohen, 2005), states that phasic LC activity is
modulated by subjects’ current attentional focus and by perceived sti-
mulus relevance (Aston-Jones et al., 1994; Rajkowski, Majczynski,
Clayton, & Aston-Jones, 2004; Usher, Cohen, Servan-Schreiber,
Rajkowski, & Aston-Jones, 1999). This theory converges with the un-
expected-uncertainty theory in predicting pupillary responses to un-
expected events such as perceptual oddball stimuli and rule-violating
items, because they trigger attentional shifts. The adaptive-gain theory
makes the additional prediction that stimuli perceived as irrelevant
elicit smaller pupillary responses than stimuli perceived as relevant. We
employed this aspect of pupil dilation to test whether participants re-
cognized that some stimuli were irrelevant in the current task – a
conclusion that could only be reached based on knowledge about the
rules – and therefore whether participants engaged in rule inference.

1.2.2. Pupil dilation as an index of cognitive load
Another question of interest in the current study, which has largely

eluded prior investigation, is whether different ways of representing
rules lead to differences in working memory demands, often termed
cognitive load. A large body of research indicates that pupils dilate when
the load on working memory increases, for example because an ex-
perimental subject is presented with items in a memory test, and that
pupils constrict when load decreases, usually when the items have been
recalled (Beatty, 1982; Johnson, Miller Singley, Peckham, Johnson, &
Bunge, 2014; Klingner, Tversky, & Hanrahan, 2011). More generally,
pupil diameter scales across task conditions as a function of working
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memory demands. Here, we used pupil dilation as a measure of cog-
nitive load in order to investigate whether participants represented the
inferred rules in a flat or hierarchical way, as we will explain in more
detail in the following section.

1.3. Research questions and hypotheses

To investigate how participants infer and represent rules, we cre-
ated an experimental paradigm that was inspired by the card game
“SET” (Benjamin & Diane, 2003). We will use terminology that has been
devised in previous research on the game (Jacob & Hochstein, 2008),
although we modified many aspects for the current task.

Participants saw four simple items in a row and were then asked to
determine whether the items formed a “SET” (Fig. 1). The items varied
on three dimensions: color, shape, and fill. Participants needed to de-
cide whether the stimuli fulfilled either of two patterns, “match” or
“span”, in each dimension. If all items are identical on a particular
dimension (e.g., four red items), they “match” on this dimension. If
each item differs from each other (e.g., red, green, blue, and orange),
they “span” in that dimension. Items need to adhere to either the match
or the span pattern for each of the three dimensions to form a SET. If
items violate both patterns in at least one dimension (e.g., three red and
one green), they cannot be a SET.

The SET rules are hierarchical in that they define a pattern over
patterns – i.e., they encompass a description at two different levels of
abstraction. The lower-level description defines the patterns “match”
and “span” as specific relations among item dimensions. The higher-
level description defines valid SET trials as the combination of these
patterns across items.

Half of the trials in this task contained a single item that violated the
SET rules (Fig. 2). For a participant who has inferred the rule under-
lying a given trial, a rule-violating item constitutes an event of un-
expected uncertainty because the underlying rule changes (Yu & Dayan,
2005), and should violate expectations (Aston-Jones & Cohen, 2005), as
explained above. We therefore predicted that rule-violating items
would elicit phasic pupillary responses if participants had inferred the
underlying rule of a trial. If participants had not inferred the underlying
rule, on the other hand, rule-violating items should not elicit larger
pupillary responses than other items. The existence of a pupillary re-
sponse for rule-violating items would therefore provide evidence that
participants inferred trial-specific rules.

Trials also varied in terms of how many item dimensions spanned
and matched. This allowed us to assess whether participants re-
presented rules in a flat or hierarchical way. Trials spanned on 0, 1, 2,

or 3 dimensions (matching on the remaining 3, 2, 1, or 0 dimensions,
respectively), and will be referred to as 0-span, 1-span, 2-span, and 3-
span, respectively. The 3-span condition is characterized by its higher-
order regularity: it affords a more efficient summary representation
under a hierarchical rule (e.g., “all dimensions span” instead of “color
spans, shape spans, and fill spans”). The 1-span and 2-span conditions,
on the other hand, do not have such higher-level regularity. Even
though it might be possible to form partially hierarchical representa-
tions (e.g., “two dimensions span, but ones matches”), we hypothesize
that the hierarchy would be most salient, and most likely to be dis-
covered and employed, in the 3-span condition. These differences in
cognitive demand between hierarchical and flat rules should be re-
flected in pupil dilation, therefore allowing us to characterize partici-
pants’ rule representation based on their pupillary response (Fig. 3; see
methods for details).

2. Methods

2.1. Participants

Sixty-eight participants (45 women and 23 men) between 18 and 32
years of age (mean=21.5, sd=2.5) were tested in this paradigm. The
participants were university students recruited from the UC Berkeley
Research Participation Pool (RPP) and received course credit for their
participation. Six participants were excluded from all analyses because
no reliable pupil dilation data could be collected (< 30% successful
pupil measurements). Possible reasons for this include the specific form
and color of eyelashes and iris, excessive blinking, or failure to fixate on
the screen (Holmqvist et al., 2011). Eight more participants were ex-
cluded because they performed at chance levels on at least one span
condition, as indicated by a d′ value of 0.51 or lower in this condition
(see methods for details), resulting in a total sample size of 54 parti-
cipants.

2.2. Eyetracking apparatus

Stimuli were presented using the Tobii E-Prime Software Extensions
(Psychology Software Tools, Pittsburgh, PA), which synchronizes the
timing of stimulus presentation on the eyetracker with a second com-
puter that records the data. Participants were seated comfortably in
front of a Tobii T120 Eye Tracker (17-in. monitor, 1280× 1024 pixel
resolution). Distance to the eyetracker was within a range of 50–80 cm.
Pupil dilation data were recorded every 16.6ms, resulting in a temporal
resolution of 60 Hz. Because Tobii T120 automatically compensates for

Fig. 1. Task procedure. Participants saw four items sequentially (1 s each), interleaved by shorter fixation periods (500ms each). After the last fixation period, the
response prompt was shown until a response was given (time-out after 10 s). The next trial’s initial 3-second fixation period started after the response or timeout.
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small head movements (within a 30×22 cm area at 70 cm distance),
participants' heads were not restrained. The camera simultaneously
recorded the pupil diameters of the left and right eyes.

2.3. Experimental procedure

Participants completed the study in one visit lasting 45–60min,
after providing informed consent. The research assistant explained the
eyetracking procedure and answered any questions. Then, participants
underwent a standard Tobii 9-point calibration procedure on the

eyetracker, which adjusts measurements individually. Participants then
underwent a 3-minute baseline assessment of pupil diameter, while
fixating a cross-hair on the computer screen. Afterwards, participants
completed the SET task during 20–25min, while pupils were recorded.
After the task, participants answered a 7-item questionnaire mainly in
multiple-choice format that assessed aspects of strategy use in the SET
task (see Appendix A). Finally, participants completed two standard
cognitive assessments: Digit Span (Wechsler & Matarazzo, 1972), a
measure of working memory capacity, and Analysis Synthesis
(Woodcock, McGrew, & Mather, 2001), a measure of fluid reasoning

Fig. 2. Example SET and noSET trials of different spans. Each cell in the table corresponds to one example trial. Columns vary along span, and rows compare SET to
noSET-3 and noSET-4 trials. The small tables in each cell show which patterns (match or span) were fulfilled or violated in each example (check mark versus cross).
On SET trials (top row), each dimension fulfills either the match or the span pattern. On noSET trials (middle and bottom rows), one rule-congruent item (third:
middle row; or fourth: bottom row) is replaced by a rule-violating item, which violates patterns on two dimensions. The span of a trial determines how many
dimensions follow the span pattern – the remaining dimensions match.

Fig. 3. Cognitive load of flat and hierarchical rules. The header row shows example trials of each span category. The table below shows for each example which
dimension fulfills which pattern (m: match; s: span). When using a flat rule (upper row), all patterns are treated separately, signified by separate arrows pointing from
dimensions to patterns. When using a hierarchical rule (bottom row), higher-order regularities are recognized and employed for a more efficient representation, such
that a single arrow connects all three dimensions to the same pattern in 0- and 3-span trials. 1- and 2-span trials do not have a higher-order regularity, and a flat
representation, retaining the information of each feature, is necessary for accurate performance. The right-most column shows the expected cognitive load for each
span under a flat versus hierarchical rule. Differences between span conditions arise because the span pattern is more complex than the match pattern (1-sp.: 1-span;
2-sp.: 2-span; etc.).
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that requires rule induction. A subset of 30 participants completed the
Number Series test (Woodcock et al., 2001) instead of Analysis Synth-
esis.

2.3.1. The SET task
Task procedure. Experimenters explained the rules of the game using

standardized computerized instructions, and participants were en-
couraged to ask questions. Participants then completed twelve practice
trials of the game with feedback (e.g., “Correct! This was a SET!” or
“Incorrect! This was not a SET!”). After additional time for questions
and the possibility to re-read the instructions, participants completed
two blocks of 40 trials without feedback, separated by a self-paced
break. Trial order was randomized within blocks.

Specifics about noSET trials. In half of the noSET trials, item3 violated
the rule (“noSET-3” condition; Fig. 2, middle row), and in the other
half, item4 violated the rule (“noSET-4”; Fig. 2, bottom row). Rule-
violating items were never presented before the third item so that
participants had the possibility to infer rules before encountering a rule-
violating item. Each rule-violating item violated the rule on exactly two
of the three item dimensions (e.g., color and shape). In 1- and 2- span
trials, one matching and one spanning dimension was always violated,
rather than two matching or two spanning dimensions. Therefore,
throughout the experiment, equal numbers of match and span patterns
were violated.

noSET-3 and noSET-4 trials. The 80 trials of the task were distributed
equally among span conditions, resulting in 10 trials for each span on
SET trials, and five trials for each span for noSET-3 and noSET-4 trials.

Complexity of span and match patterns. Based on Boolean complexity
(Feldman, 2000), the span pattern is more complex than the match
pattern. Specifically, the shortest possible formal expression is longer
for span than for match (match: (fItem1 == fItem2) Λ (fItem2 == fitem3)
Λ (fitem3 == fitem4); span: ¬(fItem1 == fItem2) Λ ¬(fItem1 == fitem3) Λ ¬
(fItem1 == fitem4) Λ ¬(fItem2 == fitem3) Λ ¬(fItem2 == fitem4) Λ ¬(fitem3

== fitem4), for dimensions f ε {color, shape, fill}; match has a length of
6, span has a length of 12). In addition, four different features are
imposed on participants’ working memory for each span, whereas the
same feature is repeated four times for a match. This implies that
working memory load, and therefore pupil dilation, is larger for the
span compared to the match pattern. This is a pre-condition for our
predictions about differences between flat and hierarchical rule re-
presentation.

Cognitive load of flat versus hierarchical rules. In the case of flat rule
representation, each rule consists of three independent parts, corre-
sponding to the three dimensions of the stimuli. Lacking higher-order
structure, these three parts need to be stored independently in working
memory, and their individual load sums up to determine overall
working memory load. Because the span rule is more complex than the
match rule, working memory load should increase linearly with span.
The top row of Fig. 3 shows the predicted working memory load for
each span condition under a flat rule representation.

A different pattern of cognitive load is expected in the case of
hierarchical rule representation. Representing rules hierarchically on 3-
span trials should reduce the working memory load because they can be
summarized as a single rule – namely, that all dimensions span.
Compressing 1- and 2-span conditions using partially hierarchical rules,
on the other hand, would lead to errors. Taken together, a hierarchical
rule representation should reduce the working memory load of 3-span
rules relative to 1- and 2-span. The bottom row of Fig. 3 shows the
predicted working memory load for the rules in each span condition,
given a hierarchical representation. The total cognitive load of each
trial as a function of span should therefore reflect the combination of
two components: (1) the working memory load of the rule (varying
either linearly or in an inverse-U fashion, depending on the rule) and
(2) the number of stimulus features that constitute each trial (increasing
linearly with span).

Visual features. All stimuli were equated on luminance to reduce

visual confounds to the pupillary response. Item features were not re-
lated to an item’s position in a trial, or to its violating the rule or not.

2.3.2. Additional cognitive measures
As described below, some participants’ pupillary response profiles

were consistent with flat rule representation and others with hier-
archical representation. Thus, we sought to determine whether in-
dividual differences in rule representation were associated with dif-
ferences in cognitive performance on independent cognitive
assessments. We hypothesized that fluid reasoning would facilitate the
discovery of hierarchical rule structure, whereas working memory ca-
pacity would facilitate the representation of several independent sub-
rules.

We assessed participants’ cognitive abilities with three standardized
psychological tests, the digit span task from the Wechsler intelligence
test (Wechsler & Matarazzo, 1972), and the Analysis Synthesis and
Number Series tests from the Woodcock & Johnson tests of cognitive
abilities (Woodcock et al., 2001). The digit span task assesses partici-
pants’ short-term memory and working memory capacity; the Analysis
Synthesis and Number Series tests assess fluid reasoning abilities. For a
more detailed description of these measures, refer to (Johnson et al.,
2014).

2.4. Analytic approach

2.4.1. Analysis of performance data
We analyzed response times (RTs) and errors with mixed-effects

regression models, using R’s package lme4 (Bates, Mächler, Bolker, &
Walker, 2015; Core, 2016). The lme4 package allows for the specifi-
cation of fixed and random effects in hierarchical models of conditions
nested within subjects. We modeled effects of interest (e.g., span) both
as fixed and random effects for a stringent analysis that allows for be-
tween-participant variation in addition to pupilation-wide variation
(e.g., “errors∼ span+ (span | participant)”). We used the lmer( )
function to define linear regression models on log-transformed RTs, and
the glmer( ) function to define logistic regression models on the binary
error measure (correct/incorrect). We specified linear and quadratic
contrasts within the predictor span to assess whether span had linear
and/or quadratic (i.e., inverse-U) effects on performance. In order to
obtain the correct number of contrasts for the number of levels in the
predictor variable span (4 levels), we specified a third orthogonal
contrasts (cubic); however, we did not predict a cubic effect of span.

We also conducted post-hoc and planned t-tests. The post-hoc tests
were adjusted for multiple comparisons using Bonferroni’s correction.
For samples of unequal variances and/or unequal sample sizes, we
adjusted the degrees of freedom (df) according to Welch (Core, 2016).

The analyses outlined above were conducted on 54 participants.
Eight participants with insufficient performance had been excluded, per
the following procedure. We first determined a d′ value of performance
slightly above chance, a value of 0.51. This corresponds to a hit rate of 6
out of the 10 presented trials per span and a correct rejection rate of 6
out of 10 trials. We then excluded all participants who showed a d′
value below 0.51 in any span condition. Using this procedure, we made
sure that all participants were excluded who performed at chance, even
when they were strongly biased in their overall response pattern, i.e.,
could not have been eliminated based on hit rate, correct rejection rate,
or overall accuracy. In the calculation of d′, we replacted percentages of
100% by 99% (and 0% by 1%) for numerical reasons. Perfect task
performance, i.e., 100% hit rate and 100% correct rejection rate, then
corresponded to a d′ value of 3.29; exactly reversed responses, i.e., 0%
hit rate and 0% correct rejection rate, corresponded to a d′ value of
−3.29; chance performance, i.e, 50% hit rate and 50% correct rejection
rate, corresponds to a d′ value of 0.

2.4.2. Analysis of pupil dilation data
We first preprocessed raw pupil dilation data. We averaged left and
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right pupil diameters, then identified and removed measurement errors,
using a local loess regression model (loess model; Cleveland, Grosse, &
Shyu, 1992). We excluded data points that fell more than five standard
deviations outside the local mean, based on 80 consecutive timepoint
(1,333ms). We used the same loess model to interpolate small gaps of
missing data (< 416ms, i.e., 25 consecutive data points).

The loess regression fits a smooth curve to the data, rather than a
straight line. Our procedure is more sensitive to erroneous data points
than standard procedures based on experiment-wide exclusion criteria
because data points in the timecourse are classified as outliers based on
their immediate vicinity. In addition, interpolation of missing data is
less susceptible to measurement errors at the edges of missing segments
because multiple data points on each side of missing segments are used
to calculate the model. Twelve percent of data points were removed
during this procedure. Visual inspection confirmed that the majority of
excluded data points were outliers. Twenty percent of missing values
were then interpolated. Visual inspection confirmed that the inter-
polated values completed the timecourses naturally.

After cleaning and interpolation, pupil data were down-sampled to
20 Hz using a rolling average of 100ms and subsequently smoothed
using a 5-point smoother. The down-sampling was done to reduce the
computational power necessary for statistical analyses on the pupil
data. The resulting temporal resolution of 20 Hz was sufficient to test all
our hypotheses. Each trial had a duration of nine seconds, resulting in
180 data points per trial.

After preprocessing, we calculated the task-evoked pupil response
(TEPR), a standard measure for pupil dilation timecourses. The TEPR
represents the increase or decrease in pupil diameter from a trial-spe-
cific baseline. We used the average dilation during the first 200ms of
each trial as baseline. Therefore, the TEPR is a timeseries of pupil di-
lation that is corrected on a trial-by-trial basis for initial pupil diameter.
Different task conditions (e.g., SET versus noSET trials) can be com-
pared qualitatively by assessing the TEPR timecourses, but we refrained
from statistical tests to avoid problems of multiple comparisons.

To quantify the observed patterns, we calculated a summary mea-
sure that reflects the amount of pupil dilation evoked by each in-
dividual item in a trial, i.e., an item-evoked pupillary response (IEPR).
Assessing IEPRs allowed us to compare the pupillary effects of the
presentation of specific items to each other (e.g., rule-violating versus
rule-congruent items). Similarly to the TEPR, the IEPR represents the
increase or decrease in pupil diameter from an item-specific baseline
period to a period capturing the pupillary response to the item. This
metric was calculated as the difference in pupil diameter between
average pre-item and post-item fixation periods (500ms). For example,
the IEPR of item3 is based on the average pupil diameter during the
fixation periods before and after the presentation of item3. Calculating
the IEPR based on the pupil dilation during the fixation periods rather
than during the presentation of the items of interest has two major
advantages. First, visual stimulation is identical during the baseline and
item-specific time windows (a fixation crosshair), eliminating potential
visual confounds. Second, pupils reach peak dilation 1–1.5 s after the
onset of a visual stimulus (Loewenfeld & Lowenstein, 1993). Because
items are presented for 1sec and fixation periods for 500ms, fixation
periods therefore coincide with the expected maximum dilation elicited
by the item of interest.

To test whether individual participants inferred flat or hierarchical
rules, we characterized their pupil dilation patterns as either linear or
inverse-U (see Fig. 3). As explained above, we reasoned that if parti-
cipants inferred flat rules, cognitive load should increase linearly from
0- to 3-span, reflected in a linear increase in pupil dilation. If partici-
pants inferred hierarchical rules, on the other hand, cognitive load and
span should show an inverse-U relationship. To characterize partici-
pants’ inferred rules, we therefore analyzed the linear and quadratic
(i.e., inverse-U) components of pupil dilation.

We used regression models to achieve this, predicting pupil dilation
during the last three items in SET trials from linear and quadratic span

contrasts. As before, we also included cubic contrasts, as well as trial
index and timepoint within the trial, as regressors of no interest. We
chose the time window of the last three items because only then do
participants have enough information to reason about the rules of a
trial. A separate regression model was calculated for each participant,
revealing the weights of the linear and quadratic components. We
calculated a continuous score of pupil dilation pattern for each parti-
cipant by subtracting the negative quadratic (i.e., inverse-U) compo-
nent from the linear component.

To allow for group comparisons, we split participants into two se-
parate groups based on the continuous pupil dilation pattern score. We
first focused on the 43 participants whose differential pupil dilation
score was predominantly inverse-U or predominantly linear, depending
on whether their negative quadratic or linear component was relatively
larger (a difference score of greater than 0.03), respectively. We se-
lected the cut-off of 0.03 based on the distribution of continuous pupil
dilation scores across the full sample, as there were clear peaks in the
distribution histograms. This approach yielded 19 participants in the
inverse-U group, and 24 in the linear group. Nevertheless, our results
are robust to variations in this procedure.

3. Results

3.1. Task performance

We began by testing for differences in accuracy and RTs as a func-
tion of span and SET status (i.e., SET vs. noSET trials). We first analyzed
the effects of SET status and span on error rates. There was a strong
linear effect of span, such that error rates increased linearly with span,
log odds= 1.78, z= 5.79, p < 0.001. There was no main effect of SET
status, showing that SET and noSET trials did not differ in overall ac-
curacy, log odds= 0.11, z= 0.76, p=0.45. Nevertheless, span and
SET status interacted marginally for the linear contrast, log
odds= 0.36, z= 1.84, p= 0.066, suggesting that span affected SET
and noSET trials differently (see Suppl. table 1 for remaining statistics).

We followed up on these analyses with pairwise Bonferroni-cor-
rected t-tests. On SET trials, the tests revealed significant differences
between 0-span and 2-span, 0-span and 3-span, and 1-span and 3-span
trials (Fig. 4; all ts > 2.64, all ps < 0.032), highlighting the strength
of the linear effect of span on performance. On noSET trials, on the
other hand, only 3-span trials differed from the other spans (all ts >
4.21, all ps < 0.001; difference between other spans: all ts < 0.99, all
ps > 0.99). To conclude, error rates increased linearly with span on
SET trials. On noSET trials, accuracy was similar across spans, with the
exception of very high error rates (13.8%) on 3-span trials.

We then performed similar tests on RTs. A main effect of SET status,
β=0.041, t(54)= 2.81, p= 0.0070, showed that participants re-
sponded faster on noSET than SET trials. A linear effect of span revealed
that performance decreased linearly with span, similar to what we
found for error rates. An interaction between SET status and the linear
span contrast, β=0.069, t= 3.10, p=0.0019, revealed that span af-
fected RTs more strongly on SET than noSET trials. Post-hoc t-tests
confirmed these results. For SET, 3-span trials differed significantly
from 0-span and 1-span trials (both ts > 3.21, both ps < 0.0052)
(Fig. 4b). For noSET, there were no differences between spans (all
ts < 1.42, all ps > 0.92). In summary, RTs were slower overall and
were affected more strongly by span on SET than noSET trials. Notably,
we found that RTs and error rates showed similar patterns (Fig. 4), i.e.,
performance on both measures decreased in the same task conditions.
In other words, there was no evidence for a speed-accuracy trade-off on
the population level.

Lastly, we tested whether performance differed when rule-violating
items were presented at the third or fourth position on noSET trials. In
0-span trials, neither error rates, t(53)= 0.50, p= 0.62, nor RTs dif-
fered, t(53)= 0.84, p= 0.40, as revealed by repeated-measures t-tests.
In higher-span trials, on the other hand, both error rates, t(161)= 4.23,
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p < 0.001, and RTs showed differences, t(161)= 2.75, p=0.0066,
such that participants made more errors and responded slower when
rule-violating items were presented at the fourth than at the third po-
sition (average of 10.5% versus 5.8% errors; and 527ms versus 442ms
in RTs). This suggests that rule-violating items imposed additional
difficulties when presented at the fourth position.

3.2. Pupil dilation in response to rule-violating items

Next, we used pupil dilation to assess how participants processed
rule-violating compared to rule-congruent items. Because 0-span trials
can be solved by identifying perceptual oddball stimuli rather than
engaging in rule inference, we analyzed these trials separately. We first
present a qualitative assessment of the TEPR timeseries (Fig. 5), and
then a quantitative analysis of IEPRs, a summary statistic of item-
evoked pupil dilation (Fig. 6).

3.2.1. TEPR timecourses
Perceptual oddball stimuli in our task elicited pupillary violation of

expectation, as expected (Aston-Jones & Cohen, 2005; Yu & Dayan,
2005). This was evident in the pupillary responses to rule-violating
items in 0-span trials (Fig. 5, left panel). Pupil dilation rose above the
baseline level of SET trails (grey) when either item3 (orange) or item4
violated the rule (red).

A similar pattern was also evident in higher-span trials (1-, 2-, and
3-span), although in these, participants could not discriminate rule-
violating items based on perceptual features alone. Rule violations at
item4 evoked a prominent increase in pupil dilation compared to the
SET baseline (Fig. 5, right panel, red). Rule violations at item 3 (orange)

were associated with elevated dilation compared to noSET-4 trials, but
not SET trials. Both noSET-4 and SET trials can serve as baseline con-
ditions in this case because only rule-congruent items have been pre-
sented in both of them up to this point. Overall, the TEPR timecourses
suggest that rule violations at item4 elicited considerable pupillary
responses in higher-span trials, with less clear evidence at item3. A
potential reason for the discrepancy between SET and noSET-4 TEPRs
at item3 in higher-span trials is that pupil dilation on SET trials was
already elevated at item2, potentially due to random noise that accu-
mulated throughout the 6-second trial. We resolved this issue by as-
sessing the pupil dilation evoked by individual items directly (IEPR), in
the analyses below.

In a final observation of the TEPR timecourses of higher-span trials,
pupil dilation on noSET-3 trials was reduced relative to SET trials at
item4 – i.e., after the presentation of a rule-violating item (Fig. 5, right
panel). As explained in the introduction, this suggests that participants
perceived items as less relevant that were presented after rule-violating
items.

3.2.2. IEPRs and pupillary violation of expectation
We next analyzed the pupillary responses evoked by individual

items, i.e., IEPRs. This allowed us to quantify the patterns observed in
the TEPR timecourses, and to test the observed patterns statistically. We
confirmed that rule-violating items elicited larger IEPRs than rule-
congruent items, both on 0-span and higher-span trials, and both when
item3 violated the rule (comparing noSET-3 to SET, 0-span: t
(55)= 4.93, p < 0.001; higher-span: t(167)= 2.10, p= 0.037) and
when item4 violated the rule (comparing noSET-4 to SET, 0-span: t
(55)= 3.88, p < 0.001; higher-span: t(166)= 4.70, p < 0.001)
(Fig. 6). Therefore, rule-violating items elicited significant pupillary
violation of expectation to conceptual as well as perceptual oddballs,
corroborating the patterns observed in Fig. 5.

We next showed that pupillary responses differed when item3
versus item4 violated the rule. Rule violations at item4 were associated
with larger IEPRs (0-span: t(55)= 2.70, p= 0.009; higher-span: t
(166)= 3.27, p=0.001), suggesting that the violation of expectation
was stronger. This result is in line with the behavioral difference pre-
sented earlier. We then assessed the decrease in pupil dilation after the
presentation of rule-violating items, comparing the IEPR of item4 on
SET trials to the IEPRs of item4 in noSET-3 trials. As expected, IEPRs at
item4 were reduced in the noSET-3 condition, both for 0-span and
higher-span trials (Fig. 6; 0-span: t(55)= 2.24, p= 0.029; higher-span:
t(167)= 5.71, p < 0.001). These results indicate that participants
expended less cognitive effort on incoming stimuli after rule violations.

Lastly, we compared the patterns of IEPRs between 0-span and
higher-span trials. IEPR patterns were strikingly similar, especially for
rule-violating items (item3, noSET-3, t(103.5)= 0.06, p=0.95; item4,
noSET-4, t(86.0)= 0.92, p= 0.36). This shows that similar pupillary
violation of expectation was evoked by perceptual and conceptual
oddball stimuli.

Taken together, the results from the IEPR analysis (Fig. 6) support
and extend the observations based on the TEPR timecourses (Fig. 5),
and show that participants recognized perceptual as well as conceptual
rule violations on-line, i.e., while encoding the items of a trial.

3.2.3. Self-report questionnaire
We followed up these pupillary analyses with participants’ self-re-

port questionnaire. One item on the questionnaire asked participants
how likely they were to memorize items that were presented after rule-
violating items, on a 5-point scale ranging from “never” (coded as 0) to
“always” (4) (the full questionnaire is presented in Appendix A). The
group average was 0.92 (SEM: 0.16), with the majority of participants
responding either “never” (25 out of 54 participants; 46.3%) or “rarely”
(14 out of 54; 26.0%). These results are in line with the pupillary
finding suggesting that participants disengaged from items presented
after rule-violating items.

Fig. 4. Task performance. Mean error rates and RTs for SET and noSET trials of
all spans. Error bars represent the standard error of the mean. RTs for correct
trials only. 0sp: 0-span; 1sp: 1-span; etc. Statistical comparisons refer to pair-
wise Bonferroni-corrected t-tests; ∼ indicates p < 0.1; * indicates p < 0.05;
** indicates p < 0.01; *** indicates p < 0.001.
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3.3. Pupil dilation pattern and task performance

The following section investigates whether participants’ patterns of
pupil dilation can shed light on whether they inferred hierarchical or
flat rules. To this aim, we calculated a continuous measure of pupil
dilation pattern for each participant, which indicates how much pu-
pillary evidence there is for either strategy (Fig. 7B). We then split
participants into two separate groups based on this measure (Fig. 7A),
after removing participants who showed similar evidence for both
strategies. We used the continuous as well as the categorical measure of
pupil dilation patterns in all subsequent analyses.

3.3.1. Relationship between pupil dilation pattern and task approach
As noted previously, humans frequently employ hierarchical struc-

ture instead of representing data flat and exhaustively, even when this
is not beneficial. As such, using hierarchical rules in the current task
might be associated with reduced cognitive control, compared to flat
rules. We employed the post-task questionnaire to gain insights on this
point, asking participants to rate the strategy they had employed on a
scale from “relying on [their] gut feeling” to “applying rules con-
sciously” (see Appendix A). Participants with inverse-U pupil dilation
patterns had lower scores than those with linear pupil dilation patterns,
t(37.8)= 2.18, p=0.038, in support of this claim. The effect was also

evident when pupil dilation pattern was treated as a continuous mea-
sure, revealing a marginal correlation with self-reported strategy,
r=−0.27, p= 0.063.

Reduced cognitive control should also be reflected in reduced RTs.
Indeed, on SET trials, continuous pupil dilation pattern had a main
effect on RTs in a linear regression model, β=2.54, t(51.6)= 2.06,
p=0.044. This shows that larger inverse-U components of pupil dila-
tion were associated with faster RTs. The effect failed to reach sig-
nificance when pupil dilation pattern was treated as a categorical
variable, β=0.15, t(2)= 1.44, p=0.15, potentially due to imprecise
groupings, or because of the reduced power in the categorical compared
to the continuous version of the test. There were no RT differences on
noSET trials (continuous pupil pattern: β=1.19, t(51.6)= 0.34, cate-
gorical: β=−0.0015, t(2)=−0.015, p=0.99). Taken together, in-
verse-U patterns of pupil dilation were associated with a reduced ten-
dency towards “applying rules consciously”, and with faster RTs,
suggesting reduced cognitive control.

3.3.2. Linking inverse-U pupil dilation patterns to hierarchical rule
representation

If an inverse-U pattern of pupil dilation indeed reflects the use of a
hierarchical strategy, participants with this pattern should show rela-
tively lower performance on trials in which hierarchical rules are ma-
ladaptive (1- and 2-span), than in which they are adaptive (3-span) or
unnecessary (0-span). We tested this prediction by conducting separate
regression models for both pairs of trials, predicting d′ from pupil di-
lation pattern while controlling for span. d′ was calculated by com-
bining hit rate (accuracy on SET trials) and false alarm rate (error rate
on noSET trials) in order to provide an unbiased measure of task per-
formance. Unsurprisingly, span showed at least marginal effects on d′ in
all models, all β’s > 0.25, all t’s > 1.82, all p’s < 0.075. Of greater
interest, and in accordance with our predictions, pupil dilation pattern
showed a significant main effect on d′ on 1- and 2-span trials, such that
more linear patterns were associated with better performance (cate-
gorical, β=0.64, t(52)= 2.46, p=0.017; continuous, β=8.18, t
(52)= 2.89, p= 0.0056), but not on 0- and 3-span trials, revealing
similar performance irrespective of pupil dilation pattern (categorical:
β=0.12, t(52)= 0.59, p=0.56, continuous: β=0.51, t(52)= 0.21,
p=0.83; Fig. 8A).

We next aimed to assess whether a similar pattern would arise for
RTs (Fig. 8C). Inverse-U pupil dilation patterns were associated with
faster RTs on SET trials across all spans, as mentioned in the previous
section. Nevertheless, this advantage was more than twice as large in 0-
and 3-span trials compared to 1- and 2-span trials, in accordance with
our expectations. Thus, on trials in which hierarchical rules were

Fig. 5. Pupil dilation during trials with and without
rule-violating items (correct trials only). 0-span
trials are on the left, higher-span trials (1-, 2-, and
3-span) on the right. SET trials (no rule-violating
item) are in gray, noSET-3 (item3 violates the rules)
in orange, and noSET-4 (item4 violates the rules) in
red. Shown are mean pupil dilation (dots) and
standard errors of the mean (shaded areas) at each
timepoint. The plot also indicates the timing of trial
events. Fixation periods (Fix.) have gray back-
grounds and item presentation periods white ones
(It1: item1, It2: item2, etc.). The thick vertical
black line indicates the onset of the response
prompt (Resp.). Average RTs for each condition are
shown within the small black box. Refer to Fig. 6
for statistical analyses.

Fig. 6. Item-evoked pupil dilation (IEPR) of rule-violating (light gray) and rule-
congruent items (dark gray) for item3 and item4. NoS3: noSET-3; NoS4: noSET-
4. Also shown are the results of planned, repeated-measures t-tests. * indicates
p < 0.05; ** indicates p < 0.01; and *** indicates p < 0.001.
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maladaptive, inverse-U patterns of pupil dilation were associated with
worse d′ than linear patterns. On trials in which hierarchical rules were
adaptive, performance was similar, but inverse-U patterns were asso-
ciated with an advantage in terms of RTs, highlighting both the

advantages and challenges of a hierarchical representation.
Further evidence for the association between inverse-U patterns of

pupil dilation and hierarchical strategies comes from participants’ re-
sponses to rule-violating items. Behavioral measures (i.e., accuracy, RT)

Fig. 7. The two pupil dilation patterns. (A)
Average pupil dilation for participants with
inverse-U (left; n= 19) and linear (right;
n= 24) pupil dilation patterns on SET trials.
Dots indicate means, shaded areas standard
errors, backgrounds as in Fig. 5. Bar graph
inlays show the mean pupil dilation during
the presentation of the final item (5.5–6 sec),
to highlight the inverse-U and linear patterns,
error bars indicate standard errors. (B) Dis-
tribution of the continuous measure of pupil
dilation pattern (see methods). Dotted ver-
tical line shows the median. Participants with
similar evidence for linear and inverse-U
patterns (n= 11) were assigned to neither
group (interval of 0.03 around the median;
lightest grey); participants with stronger
evidence for one pattern than the other were
assigned to the inverse-U (darkest grey) and
linear groups (intermediate grey).

Fig. 8. Task performance of participants with in-
verse-U and linear pupil dilation patterns. (A) d′.
Inverse-U patterns were associated with worse
performance on 1- and 2-span trials compared to
linear patterns, while performance was similar in 0-
and 3-span trials. (B) This pattern was also evident
on SET, but not noSET, trials (see suppl. Text 2). (C)
Inverse-U pupil dilation patterns were associated
with overall faster RTs on SET trials. This ad-
vantage was larger in 0- and 3-span trials compared
to 1- and 2-span. (D) IEPRs elicited by rule-vio-
lating items (average over noSET-3 and noSET-4).
Participants with inverse-U pupil dilation patterns
showed a U-shaped function, with greater IEPRs for
0- and 3-span trials compared to 1- and 2-span
trials.
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were not sensitive to group differences on noSET trials; however, the
pupillary responses were. Participants with inverse-U pupil dilation
patterns showed larger IEPRs for rule-violating items in 0- and 3-span
compared to 1- and 2-span trials, evident as a quadratic contrast of span
on IEPRs in a regression model, β=0.018, t(63)= 2.08, p=0.038.
Participants with linear pupil dilation patterns, on the other hand, did
not show this effect, β=0.011, t(63)= 1.33, p= 0.19. As predicted,
therefore, participants with inverse-U pupil dilation patterns showed
increased pupillary responses to rule violations in 0- and 3-span com-
pared to 1- and 2-span trials, i.e., when hierarchical rules were adaptive
and could aid in the recognition of rule-violating items, whereas par-
ticipants with linear patterns did not.

3.3.3. Cognitive test scores
Finally, we compared participants in terms of their scores on stan-

dardized cognitive assessments. The two groups did not differ from
each other in any measure, as revealed by planned t-tests and Pearson’s
correlation (all ps > 0.43). Thus, pupil dilation patterns were not
correlated with performance on standardized cognitive assessments of
working memory or fluid reasoning.

4. Discussion

The goal of the current study was to investigate the cognitive pro-
cesses underlying rule inference, and the structure of rule representa-
tion. To this end, we created a task in which participants would infer
rules governing the relations among a series of stimuli, and in which we
could alter the structure and complexity of these rules. On each trial of
the task, participants had to examine the relationships among four
items and determine whether a set of conditions was met such that the
items formed a SET. Many possible combinations of items could form a
SET, because the items can follow one of two patterns for each of three
stimulus dimensions. Thus, the relevant rules differ from trial to trial
and need to be inferred anew each time. The four items were presented
sequentially, giving participants the opportunity to infer the rules on-
line, i.e., while encoding the items, and allowing us to measure the
processing of each individual item based on the evoked pupillary re-
sponse. This combination of pupillometry and behavioral analyses al-
lowed us to infer which strategies participants used to glean governing
principles from a series of observations.

4.1. Pupil dilation as a measure of working memory load and violation of
expectation

We first verified that pupil dilation was a reliable measure of
working memory load (Beatty, 1982; Johnson et al., 2014; Klingner
et al., 2011) and violation of expectation (Aston-Jones et al., 1994;
Book et al., 2008; Wetzel et al., 2016; Yu & Dayan, 2005) in the current
paradigm. The relationship between pupil dilation and working
memory load was evident in that pupil dilation ramped up during a trial
as one item was presented after another and more information had to be
held in memory, and pupil dilation subsided after a response had been
made, in a way strikingly similar to classic short-term memory para-
digms, such as the digit span task (Johnson et al., 2014; Klingner et al.,
2011). Pupil dilation was also sensitive to violations of expectation, as
evident in the TEPR timecourses and IEPRs or rule-violating items in
noSET 0-span trials. We were therefore confident in the use of pupil
dilation as a measure of working memory load to discriminate between
flat and hierarchical rule representations, and as a measure of violation
of expectation as evidence for on-line rule inference.

4.2. Evidence for rule inference

Participants’ pupils showed pronounced violation-of-expectation
responses to rule-violating items. In trials other than 0-span, in which
the rule-violating item is a simple perceptual oddball, this implies that

participants implicitly recognized the violation of an inferred rule.
Violation-of-expectation responses were evident as early as at the third
position, which suggests that participants inferred rules based on just
two items, the minimally necessary information. In addition, violation-
of-expectation responses were larger when the fourth item violated the
rules rather than the third, and participants also made more errors and
responded more slowly on these trials. This suggests that it became
increasingly difficult for participants to reject a rule when they had seen
more supporting evidence for it. In other words, participants actively
constructed the rule during item presentation, taking into account each
item as additional evidence. Finally, participants’ load on working
memory was diminished after the presentation of rule-violating items,
as evident in reduced pupil dilation. This shows that participants allo-
cated fewer attentional resources once they recognized that an inferred
rule was violated, and they had therefore found the correct answer to
the trial. Participants confirmed this lack of attention to items after
rule-violating items in self-reports. Taken together, participants’ pat-
terns of behavior, combined with their pupillary responses, show that
they successfully inferred and employed abstract rules on-line, i.e.,
while encoding the items.

4.3. Flat versus hierarchical rule representation

We next aimed to shed light on the structure of participants’ rule
representations, with a specific focus on flat versus hierarchical re-
presentation strategies (Badre & Frank, 2012; Collins et al., 2014; Frank
& Badre, 2012). In the SET task, exhaustive flat rules retain all the
observed information and therefore allow for perfect performance, as
long as the amount of information does not exceed working memory
capacity. Nevertheless, flat rules do not provide a means to reduce or
compress the amount of information through more efficient re-
presentation, and therefore individuals representing flat rules have no
efficient means of handling trials in which working memory capacity is
exceeded. Hierarchical rules, on the other hand, compress information
on the basis of higher-order regularities, and restructure information
more efficiently. However, hierarchical representation might lead to
loss of information when information is not compressible.

Based on the expected working memory load of the rules in each
span condition, we first predicted specific patterns of pupil dilation for
flat and hierarchical rules: We predicted linear increases in pupil dila-
tion over span for flat rules, and inverse-U relations between span and
pupil dilation for hierarchical rules, and characterized participants’
patterns of pupil dilation based on these patterns. Supporting our pupil-
based characterization of participants’ rules, participants with pre-
dicted hierarchical rules showed faster RTs than participants with
predicted flat rules, and reported less conscious effort in representing
rules, consistent with the claim that humans prefer to represent rules
hierarchically rather than flat, even when it is not necessary or bene-
ficial – and even when it hurts task performance (Badre & Frank, 2012;
Collins et al., 2014; Shenhav, Botvinick, & Cohen, 2013). The use of
structured hierarchical rules might therefore be a go-to strategy,
whereas the use of exhaustive flat rules requires additional cognitive
control.

Evidence for the specific benefits, as well as drawbacks, of hier-
archical rule representation comes from performance differences be-
tween participants in the two groups. We propose that hierarchical rule
representation yielded faster responses on 3-span trials because they
have higher-order regularity and are compressible, but led to mistakes
on 1- and 2-span trials because they lack higher-order regularity, and
compression therefore leads to the loss of information.

In noSET trials, the use of hierarchical versus flat rules was not
associated with behavioral differences, which was partly due to task
design: In these trials, correct answers could be identified seconds be-
fore the response prompt. We therefore turned to pupillary responses as
a more sensitive measure. Participants with predicted hierarchical rules
showed larger pupillary responses to rule-violating items in trials with
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vs. without hierarchical regularity, suggesting that they had formed
stronger expectations and/or were more surprised about the violation
of expectations in these trials. This finding again suggests that hier-
archical rules were more efficient when processing trials with hier-
archical regularity.

The results presented so far held when rule use was treated as a
categorical measure (i.e., characterizing participants as using either flat
or hierarchical rules) or as a continuous measure (i.e., ranging from
predominantly flat to predominantly hierarchical). In contrast to the
binary categorical measure, this continuous measure can capture as-
pects of more flexible rule use. For example, participants might change
strategies over time, or employ a mix of strategies. The modulation of
performance and pupil dilation patterns by this continuous measure
therefore suggests that flexible rule use is reflected in pupillary re-
sponses.

We also investigated potential correlates of flat versus hierarchical
rule use. One possibility is that the inference of flat versus hierarchical
rules challenges different cognitive processes, which are based on dif-
ferent cognitive abilities. However, there were no differences between
groups on standard measures of working memory (Forward and
Backward Digit Span) or fluid reasoning (inductive reasoning tasks:
Analysis-Synthesis and Number-Series). Thus, differences between
groups were likely not attributable to differences in the capacity to
maintain relevant information in working memory or to integrate re-
lations across multiple stimuli. More research is needed to shed light on
potential reasons for individual differences in rule representation.

4.4. Ruling out differences in decision threshold as alternative explanation

Could there be a simpler explanation for the observed patterns of
pupil dilation and task performance than the representation of flat
versus hierarchical rules? Previous work that combined pupillometry
and drift diffusion modeling points to this possibility. In one study on
value-based choice, larger pupil dilations and higher decision thresh-
olds predicted slower but more accurate responses in conditions of
cognitive conflict (Cavanagh, Wiecki, Kochar, & Frank, 2014). In our
study, 3-span trials are assumed to impose greater cognitive demands
than lower-span trials (Fig. 3), and the previous study would therefore
predict larger pupil dilations, higher decision thresholds, and slower
but more accurate responses on these trials. Participants with linear
pupil patterns indeed showed such a pattern, but participants with in-
verse-U patterns showed the opposite pattern. The alternative account
therefore suggests that participants with linear pupil patterns increased
their efforts in the face of cognitive demand, whereas participants with
inverse-U patterns reduced their efforts, and that this adaptation to task
demands is reflected in pupil dilation.

To investigate the alternative account, we estimated decision
thresholds by fitting drift diffusion models (Wiecki, Sofer, and Frank,
2013; see Supplementary Materials for modeling details and statistics).
Drift diffusion models estimate drift rates and decision thresholds,
which reflect the quality of the information available from a stimulus,
and differences in the criterial amounts of information required before a
decision can be made, respectively (Ratcliff & McKoon, 2008). To assess
the altnerative account, we tested for differences in decision thresholds
between participants with linear versus inverse-U patterns of pupil di-
lation.

Contrary to the predictions of the alternative account, we found that
the groups did not differ in terms of decision thresholds on 3-span trials.
Qualitatively, there was also no evidence that participants with linear
pupil patterns increased their decision thresholds on 3-span trials, or
that participants with inverse-U patterns decreased them. Statistically,
we found no evidence that linear pupil patterns were associated with
larger increases in decision thresholds for 3-span trials than inverse-U
patterns. However, linear pupil patterns were associated with overall
higher decision thresholds, which is in accordance with increased
cognitive control when representing rules in a flat way (see

Supplementary Materials for statistical details). Taken together, our
drift diffusion analyses do not support an alternative explanation of our
findings that links pupil dilation to decision thresholds rather than rule
representation.

5. Conclusion

Using a combination of pupillometry and behavioral analyses, we
described the timecourse of rule inference in participants performing a
rule-based reasoning task. This research goes beyond previous in-
vestigations on rule inference in that it uses a neurophysiogical measure
to shed light on the underlying cognitive process. We found that par-
ticipants inferred rules early and proactively, integrated subsequent
information into their rule representation, and recognized rule viola-
tions on-line. Patterns of pupil dilation also provided insight into in-
dividual differences in the strategies that participants used to represent
the rule structure of the task, either flat or hierarchical: differences that
were not detectable based on behavior alone. In future studies, this
novel behavioral and eyetracking paradigm could be used to study
changes in cognition over the lifespan or in patient populations.
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